Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report the analysis of a planetary microlensing event AT2021uey. The event was observed outside the Galactic bulge and alerted both space-(Gaia) and ground-based (ZTF and ASAS-SN) surveys. From the observed data, we find that the lens system is located at a distance of ∼1 kpc and comprises an M-dwarf host star of about half a solar mass, orbited by a Jupiter-like planet beyond the snowline. The source star could be a metal-poor giant located in the halo according to the spectral analyses and modelling. Hence, AT2021uey is a unique example of the binary-lens event outside the bulge that is offered by a disc-halo lens-source combination.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Gravitational microlensing is a phenomenon that allows us to observe the dark remnants of stellar evolution, even if these bodies are no longer emitting electromagnetic radiation. In particular, it can be useful to observe solitary neutron stars or stellar-mass black holes, providing a unique window through which to understand stellar evolution. Obtaining direct mass measurements with this technique requires precise observations of both the change in brightness and the position of the microlensed star. The European Space Agency’sGaiasatellite can provide both. Using publicly available data from different surveys, we analysed events published in theGaiaData Release 3 (GaiaDR3) microlensing catalogue. Here, we describe our selection of candidate dark lenses, where we suspect the lens is a white dwarf (WD), a neutron star (NS), a black hole (BH), or a mass-gap object, with a mass in the range between the heaviest NS and the least massive BH. We estimated the mass of the lenses using information obtained from the best-fitting microlensing models, source star, Galactic model, and the expected parameter distributions. We found eleven candidates for dark remnants: one WDs, three NSs, three mass-gap objects, and four BHs.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with at a projected orbital separation au, and the host is a ∼1.1 M ⊙ turnoff star at ∼1.3 kpc. At , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner–outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius θ E but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system.more » « less
- 
            We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195;V= 13.7 mag,J= 10.4 mag,R★= 0.512 ± 0.015R⊙,M★= 0.514 ± 0.012M⊙,d= 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10R⊕, 2.26 ± 0.10R⊕, and 1.92 ± 0.13R⊕and masses of 4.45 ± 0.65M⊕, 3.65 ± 0.97M⊕, and <5.2M⊕at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types.more » « less
- 
            We report the discovery by the TESS mission of a super-Earth on a 4.8-days orbit around an inactive M4.5 dwarf (TOI-1680), validated by ground-based facilities. The host star is located 37.14 pc away, with a radius of 0.2100 ± 0.0064R⊙, mass of 0.1800 ± 0.0044M⊙, and an effective temperature of 3211 ±100 K. We validated and characterized the planet using TESS data, ground-based multi-wavelength photometry from TRAPPIST, SPECULOOS, and LCO, as well as high-resolution AO observations from Keck/NIRC2 andShane.Our analyses have determined the following parameters for the planet: a radius of 1.466−0.049+0.063R⊕and an equilibrium temperature of 404 ± 14 K, assuming no albedo and perfect heat redistribution. Assuming a mass based on mass-radius relations, this planet is a promising target for atmospheric characterization with theJames WebbSpace Telescope (JWST).more » « less
- 
            One of the main scientific goals of the TESS mission is the discovery of transiting small planets around the closest and brightest stars in the sky. Here, using data from the CARMENES, MAROON-X, and HIRES spectrographs together with TESS, we report the discovery and mass determination of aplanetary system around the M1.5 V star GJ 806 (TOI-4481). GJ 806 is a bright (V≈ 10.8mag,J≈ 7.3 mag) and nearby (d= 12 pc) M dwarf that hosts at least two planets. The innermost planet, GJ 806 b, is transiting and has an ultra-short orbital period of 0.93 d, a radius of 1.331 ± 0.023R⊕, a mass of 1.90 ± 0.17M⊕, a mean density of 4.40 ± 0.45 g cm−3, and an equilibrium temperature of 940 ± 10 K. We detect a second, non-transiting, super-Earth planet in the system, GJ 806 c, with an orbital period of 6.6 d, a minimum mass of 5.80 ± 0.30M⊕, and an equilibrium temperature of 490 ± 5 K. The radial velocity data also shows evidence for a third periodicity at 13.6 d, although the current dataset does not provide sufficient evidence to unambiguously distinguish between a third super-Earth mass (Msini= 8.50 ± 0.45M⊕) planet or stellar activity. Additionally, we report one transit observation of GJ 806 b taken with CARMENES in search of a possible extended atmosphere of H or He, but we can only place upper limits to its existence. This is not surprising as our evolutionary models support the idea that any possible primordial H/He atmosphere that GJ 806 b might have had would be long lost. However, the bulk density of GJ 806 b makes it likely that the planet hosts some type of volatile atmosphere. With transmission spectroscopy metrics (TSM) of 44 and emission spectroscopy metrics (ESM) of 24, GJ 806 b is to date the third-ranked terrestrial planet around an M dwarf suitable for transmission spectroscopy studies using JWST, and the most promising terrestrial planet for emission spectroscopy studies. GJ 806b is also an excellent target for the detection of radio emission via star-planet interactions.more » « less
- 
            We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra fromShane/Kast andMagellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii ofRp= 2.47 ± 0.13R⊕andRp= 2.43 ± 0.21R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature ofTeq= 527 ± 8 K and an irradiation ofSp= 12.8 ± 0.8S⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature ofTeff= 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag= 11.87) each 4.9 days, and has an equilibrium temperature ofTeq= 412 ± 8 K and an irradiation ofSp= 4.8 ± 0.4S⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature ofTeff= 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.more » « less
- 
            We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.more » « less
- 
            ABSTRACT We present K2-2016-BLG-0005Lb, a densely sampled, planetary binary caustic-crossing microlensing event found from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is the first bound microlensing exoplanet discovered from space-based data. The event has caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the Kepler data and to simultaneous observations from multiple ground-based surveys. Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet’s mass directly. We find a host mass of 0.58 ± 0.04 M⊙ and a planetary mass of 1.1 ± 0.1 MJ. The system lies at a distance of 5.2 ± 0.2 kpc from Earth towards the Galactic bulge, more than twice the distance of the previous most distant planet found by Kepler. The sky-projected separation of the planet from its host is found to be 4.2 ± 0.3 au which, for circular orbits, deprojects to a host separation $$a = 4.4^{+1.9}_{-0.4}$$ au and orbital period $$P = 13^{+9}_{-2}$$ yr. This makes K2-2016-BLG-0005Lb a close Jupiter analogue orbiting a low-mass host star. According to current planet formation models, this system is very close to the host mass threshold below which Jupiters are not expected to form. Upcoming space-based exoplanet microlensing surveys by NASA’s Nancy Grace Roman Space Telescope and, possibly, ESA’s Euclid mission, will provide demanding tests of current planet formation models.more » « less
- 
            Planets with radii between that of the Earth and Neptune (hereafter referred to as `sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available